Лазер как замена химическим удобрениям

Рейтинг самых честных бинарных опционов за 2020 год:
  • Бинариум
    Бинариум

    1 место! Лидер! Лучший брокер бинарных опционов за этот год!
    Идеальный вариант для начинающих — дают бесплатное обучение и демо-счет!
    Заберите свой бонус за регистрацию:

Лазер как замена химическим удобрениям

Лазерная очистка поверхности

В то время, как лазерная сварка, прошивка отверстий и резка известны уже многие годы, технология лазерной очистки все еще считается нишевой. Она долгое время не применялась в промышленности, несмотря на возможность удаления большей части органических загрязнений.

Сегодня широкий спектр систем на основе импульсных лазеров находит свое применение для очистки или удаления покрытий. Лазерное оборудование применяется для удаления слоя краски с деликатных поверхностей, снятия изоляции с проводов, отчистки поверхности, удаления остатков вулканизации резины на пресс-формах для покрышек и пр. Все эти операции в том или ином роде могут быть отнесены к «очистке».

Почему лазерное излучение?

Развитие лазерной очистки произошло под влиянием потребности в неабразивной и безопасной очистке, способной заменить использование химических растворителей и механических абразивных систем.

Одной из ключевых проблем, характеризующих большинство традиционных методов очистки, является повреждение подложки и негативное влияние на окружающую среду. Абразивная очистка повреждает деликатные поверхности и сопровождается большими объемами загрязнения. Использованию же химических растворителей сопутствуют жидкие отходы и потенциально опасные испарения. Подобные проблемы и привели к созданию первых чистящих лазерных систем.

К преимуществам лазерной очистки поверхности относятся следующие:

  1. бесконтактный / неабразивный процесс;
  2. отсутствие химических растворителей или частиц абразива;
  3. снижение объемов загрязнений;
  4. возможность автоматизации;
  5. безопасность.
Тип процесса Взаимодействие с основой Безопасность и экология Автоматизация
Химические растворители Не повреждает Большой объем загрязнений (опасные расстворители), тре­бующий специальной утилизации. Оператору требуются средства защиты. Низкая — Средняя
Пескоструйная обработка Высокая абразивность, не подходит для очистки деликатных поверхностей Большой объем загрязнений (песок, пластиковые гранулы и т.п.). Средняя — Высокая
Очистка сухим льдом Неэффективна для очистки деликатных поверхностей Очень шумная. Опасные испарения. Низкая. Ручная обработка.
Лазерная очистка Не повреждает Низкий объем выбросов (только удаляемый материал) Высокая

Как работает лазерная очистка поверхности

Практически все технологии лазерной очистки основываются на импульсном лазерном излучении, при этом значения выходной мощности, длины волны излучения и параметров самого импульса могут значительно отличаться.

Сверхкороткие импульсы (порядка нано- – микросекунд) с мощностью в несколько миллионов Ватт направляется на очищаемую поверхность. Воздействующая энергия приводит к взрыву загрязнения, часть которого испаряется, а остатки рассеиваются в виде пыли, и могут быть удалены системой фильтрации. Этот процесс повторяется до достижения необходимой глубины снятия. Лазерное излучение поглощается органическими материалами, такими как краска, изоляция или резина. Металлические поверхности, такие как формообразующая для покрышки или медная жила, отражают лазерное излучение. В результате на подложку не оказывается механического, химического или теплового воздействия.

Глубина абляции может контролироваться с точностью до 5-10 мкм, что делает возможным выборочное удаление покрытий. Это особенно важно, если необходимо удалить только часть из многослойной окраски, удалив верхний слой, без повреждения подложки.

Существует целый ряд импульсных лазеров на YAG:Nd, CO2 и диодные. Для очистки поверхности доказывают свою эффективность CO2-TEA лазеры, и до сегодняшнего дня большинство установок по лазерной очистки строится на их основе*.

Применение и экономика

В технологии лазерной очистки можно различить микро-, макро- и крупно-масштабные применения. Что касается стоимости вложений, то они напрямую зависят от требуемой мощности лазера, определяющей, как быстро необходимо производить очистку и каков объем удаляемого материала.

В электронной индустрии существует потребность в зачистке проводов для проведения приварки или припайки разъемов, клемм или соединителей. Так, изоляция на тонких проводах, таких как плоские, может эффективно удаляться, без повреждения медного проводника. В отличие от механической зачистки, лазер способен удалять изоляцию толщиной от 1 мкм или серебряное покрытие проводника, без воздействия на слой с антикоррозийной защитой. Лазерные установки позволяют выполнять тонкие надрезы и формировать окна на тонких проводах, печатных платах и подобных компонентах с большей точностью и гибкостью, чем механические способы.

На автомобильные тормозные системы или системы охлаждения наносят полиамидные покрытия, защищающие их от износа и коррозии. Для установки выводов необходимо зачищать покрытие на концах трубок. Лазерные системы способны успешно удалять покрытие без повреждения мягкой алюминиевой сердцевины.

Для таких применений бюджет систем начинается от $ 150 000, а производительность системы может достигать скоростей в одно изделие за несколько секунд, в зависимости от удаляемого материала.

При производстве изделий из резины и при производстве покрышек возникает потребность в очистке форм после того, как форма выполнит несколько сотен изделий. Пресс-формы, в которых происходит остывание, необходимо демонтировать и очищать при помощи механических установок или химических растворителей. Процесс отнимает много времени, а также может повредить дорогую оснастку. Очистка формы для покрышки типового пассажирского автомобиля занимает около восьми машинных часов, и примерно столько же времени уходит на сопутствующие работы. Применение лазера позволяет очищать формы без демонтажа, непосредственно на рабочем станке, при этом, без возможных повреждений. Мобильная лазерная установка способна за 45–60 минут очистить пресс-форму для покрышки, площадь которой составляет немногим меньше 1 м 2 .

Подобные системы используют пять из десяти крупнейших производителей автопокрышек, каждому из которых такая установка обошлась в $500 000.

В качестве других примеров макро–применений, в том числе мобильных, можно привести удаление краски с аэрокосмических приборов, деталей автомобилей и т.п.

С начала 1990-х коммерческие и военные самолеты должны регулярно очищаться от краски для проведения D-check проверок и работ по обслуживанию. С увеличением законодательных запретов на применение химических растворителей лазерные технологии могут предложить потенциальную замену. Вместе с этим, лазерная очистка разрабатывается для удаления красок на основе свинца с мостов и корпусов кораблей.

Многочисленные научно-исследовательские проекты совместно с промышленниками и при финансовой поддержке государственных институтов дали неоднозначные результаты. На сегодняшний день лишь небольшое число промышленных лазерных систем используются для снятия краски с деталей самолетов и вертолетов, что доказывает потенциал данной технологии. При этом, шагов к полной зачистке воздушных судов, железнодорожных вагонов или зданий от краски не было сделано до сих пор.

Применяемые в автоматизированных линиях на базе многокиловаттных лазеров решения обходятся в $1 – 2 млн., позволяя очищать 10 – 20 м 2 /час. Существует также возможность повысить производительность.

Оборудование для лазерной очистки

Из-за многообразия задач и деталей установки по лазерной очистке редко бывают оборудованием «со склада». Ключевым в подобных системах является принцип перемещения луча по детали. В некоторых решениях луч сканируется по поверхности (так например, при очистке пресс-форм, снятии краски), в то время как в других луч остается неподвижным, над перемещающейся деталью (удаление изоляции проводов).

Подготовлено по материалам:
JÖrg Jetter – Laser surface cleaning [ILS]

* Прим. переводчика: Оригинальная статья была опубликована в [ILS] в 2002 году и отражает ситуацию на тот момент времени.

Мобильная установка для
лазерной очистки поверхности

Применение

Испытания

Свойства

Химические лазеры

Перспективы

Применение

Применяются в операциях резки и сварки трехмерных изделий из листовой стали (в режиме непрерывной генерации), резки алюминиевых сплавов, и в операциях очистки поверхности (в режиме модуляции добротности), сварки и резки нержавеющей стали, с подачей излучения по оптоволокну (ø 150 мкм), включая применение в робототехнических системах для чистовой сварки трехмерных изделий.

Полупроводниковые лазеры лежат в основе современных систем передачи данных. Эти приборы с высоким коэффициентом полезного действия преобразуют электрическую энергию в световое излучение. В зависимости от мощности системы, КПД может варьироваться от 40 до 85%. Современные полупроводниковые лазеры в больших количествах применяются в телекоммуникационном оборудовании для ВОЛС и сочетают в себе одновременно генератор несущей и модулятор.

Твердотельный лазер (ТТЛ) специалисты США рассматривают как один из наиболее перспективных генераторов для систем лазерного оружия самолетного базирования, предназначенного для борьбы с баллистическими (БР) и крылатыми (КР) ракетами различного базирования и назначения, самолетами, подавления оптикоэлектронных средств ПВО и защиты своих самолетов-носителей ядерного оружия от управляемых ракет противника.

ВМФ США рассчитывает, что боевые корабли уже в следующие десять лет будут оснащаться твердотельными лазерами. Это позволит нейтрализовывать вражеские суда и, со временем, даже сбивать направленные на корабль ракеты.

В 1961 г. Дж. Полани обратил внимание на возможность использования химической энергии для возбуждения молекул и создания инверсии населенностей. Первый лазер, действующий по этому принципу, создали через четыре года Дж. Каспер и Дж. Пиментал. Они использовали реакцию синтеза соляной кислоты из хлора и водорода (Н2), инициированную соответствующим светом, которая протекает по схеме:

Химические лазеры имеют большую эффективность – удается снимать большую мощность с единицы расхода (200-300 кВт с 1 кг/сек) – габаритные размеры лазерных комплексов получаются относительно небольшими и обладают рядом достоинств. Это короткая длина волны излучения (малая угловая расходимость, наличие «окна прозрачности» земной атмосферы для НХЛ), непрерывный режим работы (длительность зависит от запаса компонентов, и может составлять 10 – 100 секунд), возможность масштабирования, малое потребление энергии, автономность.

химические лазеры поражают цели когерентными лучами за счет теплового воздействия.

С помощью ХЛ сегодня можно получать непрерывное излучение мощностью в несколько мегаватт. Это достигается благодаря тому, что в химических лазерах можно организовать прокачку больших расходов активной среды через резонатор.

Первые успешные наземные испытания химического лазера ATL (Advanced Tactical Laser), который должен быть установлен на борту самолета C-130H, прошли 13 мая. «Лазерная стрельба» производилась через отверстие диаметром 125 см, расположенное в днище фюзеляжа модифицированного военно-транспортного самолета. Как отметил вице-президент и главный менеджер противоракетных систем компании «Боинг» Скотт Фанчер, «Первые стрельбы лазера, установленного на самолет показывают, что программа идет нужным темпом в направлении создания высокоточного оружия, которое значительно снизит сопутствующий ущерб».

Областями применений химических лазеров, в основном, являются военные задачи, например, в качестве противоракетного оружия, которое будет работать даже на борту больших самолетов.

СХЛ применяется в таких областях, как дистанционное разделение материалов в опасных условиях (утилизация ядерных реакторов), очистка орбиты от мелкого космического мусора и применение лазеров этого типа в системах специального военного назначения (лазерное оружие).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9902 — | 7688 — или читать все.

Обработка металла лазером

Вопросы, рассмотренные в материале:

  • Где преимущественно применяется технология обработки металла лазером
  • Какие существуют способы обработки металла лазером
  • Какое оборудование используется для лазерной обработки металлов
  • Каковы особенности лазерной обработки различных видов металла

Научно-технический прогресс позволил сократить долю ручного труда в производстве. Благодаря разработке передовых инновационных технологий процесс металлообработки стал автоматизированным. Обработка металла лазером позволяет повысить сложность, скорость и точность производственных операций. Из этой статьи вы узнаете об особенностях и преимуществах этой современной технологии.

История технологии обработки металла лазером

В инновационной технологии обработки металла лазером воплотились все передовые достижения академической физики. Оптический квантовый генератор или лазер был открыт во второй половине XX века. Лазерное устройство лавинообразно генерирует фотоны с одинаковой энергией, направленностью движения и поляризацией и преобразует энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию монохроматического когерентного света. Этот удивительный оптический прибор излучает мощный узконаправленный пучок интенсивного света.

Открытие было высоко оценено физиками и инженерами. В 1962 году, после испытания первого лабораторного квантового генератора, американская фирма «Спектра физикс» разработала и представила на рынке коммерческие лазеры. Это был настоящий революционный прорыв в лазерных технологиях. Позже были созданы различные типы и модификации лазера – от микроприборов до гигантских установок. Например, длина лазерной установки «Нова» в Национальной лаборатории Лоуренса Ливермора в США составляет 137 м, а ее суммарная мощность – 1014 Вт. Лазерное оборудование широко используется в научных и производственных областях.

Уже в 70–80 годы XX века началось интенсивное развитие лазерных технологий, которые с большим успехом применялись в обработке металла: сварке, закалке, наплавке, маркировке, резке. С помощью лазерного оборудования изготавливались различные детали и элементы конструкций: прокладки, кронштейны, дисковые пилы, панели, щитки для приборов, двери, декоративные решетки.

Изобретение кинематических сложных роботов-манипуляторов и гибких оптоэлектронных лучепроводов позволило расширить возможности лазерной металлообработки. В современном производстве с помощью лазера осуществляется резка пространственных металлоизделий.

Сегодня обработка металла лазером – это высокоэффективный технологический процесс. Лазерные станки являются высокотехнологичным современным оборудованием благодаря уникальным свойствам лазера: высокой мощности излучения – до 108-109 Вт/см2 в непрерывном режиме и до 1016-1017 Вт/см2 в импульсном.

Лазерный луч легко управляется автоматизированными системами. Мощное излучение мгновенно нагревает и прожигает сфокусированную зону. При охлаждении металла заготовка не деформируется и сохраняет свою форму. Область резки очищается от продуктов сгорания способом продувки с использованием технологического газа: кислорода, азота, воздуха.

В каких сферах применима обработка металла лазером

Открытие лазера можно назвать одним из самых значимых научно-технических достижений XX века. Разработка универсальных лазерных технологий способствовала рождению современных направлений научной и технической оптики, появлению новых промышленных отраслей.

Лазерные технологии применяются не только для обработки различных материалов, они стали незаменимым элементом специализированных информационных систем, широко используются в науке, медицине, при создании военной техники.

Рекомендовано к прочтению

Лазерная резка, в отличие от механического метода, является более эффективным и экономически выгодным способом раскроя любых металлических листов. Такой метод металлообработки не наносит вреда материалам, полностью исключает деформацию, не требует дальнейшей постобработки.

При обработке металла лазером снижается расход материалов. Современные лазерные станки оснащены специальными программами, которые автоматически помогут рассчитать наиболее экономичный способ раскроя материала.

Лазерная металлообработка является универсальной и востребованной в различных производственных областях: строительстве, машиностроении, станкостроении. С помощью лазера можно изготовить не только крупные массивные детали, но и хрупкие декоративные элементы.

Преимущества и недостатки обработки металла лазером

Лазерная обработка является самым эффективным и высококачественным способом резки различных металлов. Весь технологический процесс раскроя автоматизирован и выполняется по заданным критериям. Лазер хорошо режет любые металлы с различными показателями теплопроводности.

Высокая энергетическая мощность лазерного луча обеспечивает расплавление металла в области резки. Но при этом полностью исключается даже минимальная деформация заготовки, так как зона термического воздействия очень ограничена. Эта особенность позволяет использовать лазерную технологию для обработки мягких металлов.

Преимущества обработки метала лазером:

    • Полностью исключается механическое воздействие на заготовку или деталь. Лазерная технология позволяет резать мягкие, хрупкие материалы без риска деформации.
    • Возможность обрабатывать твердые сплавы.
    • Высокая точность раскроя и реза. Кромка в зоне резки очень ровная, отсутствуют наплывы, заусеницы и другие дефекты.
    • Не требуется последующая дополнительная обработка готовых изделий.
    • Есть возможность вырезать заготовки и детали даже самой сложной геометрической формы.
    • Простота и легкость управления оборудованием. Рисунок детали выполняется в чертежной программе и переносится в компьютер лазерного оборудования для выполнения резки.
    • Высокая производительность. Обработка металла лазером происходит в 10 раз быстрее, чем резка с помощью газовой горелки.
    • Высокая скорость раскроя тонколистового проката.
    • Максимальная экономия расходных материалов за счет компактного размещения деталей на листе.
    • Экономическая эффективность. Снижение затрат при изготовлении небольших партий деталей, так как отсутствует необходимость изготовления форм для прессования или литья.

Недостатки обработки метала лазером:

      • Высокая стоимость оборудования.
      • Низкая эффективность обработки металлов и сплавов с высокими отражающими свойствами: алюминием, нержавеющей сталью.
      • Допустимая максимальная толщина металлического листа – 20 мм.

Виды обработки металла лазером

В современном промышленном производстве все чаще применяются лазерные установки. С помощью этой уникальной технологии осуществляется резка, формовка, стыковка материалов. Лазерным лучом можно нанести покрытие или изменить свойства различных материалов: металла, пластмассы, древесины, бумаги и металла.

Наиболее востребованными лазерными технологиями являются: прямое лазерное спекание (DMLS), лазерная и лазерно-механическая гибка, лазерная резка и лазерное сверление, лазерная сварка.

1. Прямое лазерное спекание металлов.

Технология прямого лазерного спекания позволяет быстро изготовить образцы любых металлических деталей без ограничения в геометрической форме. Таким способом изготавливаются металлические формообразующие вставки пресс-форм для литья полимеров под давлением.

Для выполнения прямого лазерного спекания в компьютер вводятся данные в трех измерениях. С помощью высокотемпературного лазерного луча металлический порошок равномерно и постепенно наплавляется вдоль контура заготовки в соответствии с 3D-данными. Готовые детали отличаются высокой прочностью и могут выдерживать максимальные механические нагрузки.

Прямое лазерное спекание применяется для обработки таких сплавов и металлов, как:

2. Лазерная гибка металлов.

С помощью технологии лазерной гибки осуществляется загибание заготовки. Лазерный луч нагревает зону обработки на плоской металлической пластине. Поверхность, не прогретая лазером, препятствует расширению металла в месте нагрева. Под действием возникшего механического напряжения пластина сгибается. Происходит пластическая деформация металла, вследствие которой пластина после охлаждения сохраняет новую форму.

При выполнении лазерно-механической гибки место сгиба сначала нагревается с помощью лазерного луча, а затем осуществляется механический загиб пластины. Эта технология позволяет уменьшить механическое воздействие в процессе гибки и увеличить относительное удлинение при разрыве металла. Такая обработка металла лазером дает возможность получить больший угол при меньших радиусах изгиба.

3. Лазерная резка металлов.

Технология лазерной резки позволяет с помощью лазерного луча выполнить термическую резку металлических листов или трехмерных заготовок: труб, профилей.

Метод лазерной резки используется в случае, если необходимо быстро и с высокой точностью произвести обработку геометрически сложных, двух- или трехмерных заготовок, сделать трехмерные вырезы в труднодоступных зонах, выполнить бесконтактную резку. Скорость обработки составляет от 10 до 100 и более м/мин. Лазерная резка, по сравнению с вырубкой в штампе, является экономически выгодным способом изготовления даже небольшого количества заготовок.

В производстве могут использоваться комбинированные установки, оснащенные фокусированным лазером высокой мощности для лазерной резки и вырубной головкой для вибрационной высечки и вырубки в штампе. На таком оборудовании можно выполнить две операции – лазерную резку и вырубку в штампе. В таких устройствах обычно применяется углекислотный (газовый), твердотельный или волоконный лазер.

4. Лазерное сверление металлов.

Обработка металла лазером осуществляется без снятия стружки. С помощью лазерного луча внутрь заготовки локально передается мощный поток энергии. В зоне лазерного воздействия материал ионизируется, превращается в пар (плазму) и испаряется. Чтобы исключить образование наплавления по краю отверстия, образовавшаяся плазма отбрасывается в сторону под давлением, которое возникает между внешней средой заготовки и местом сверления.

Отверстие сверлится за один импульс лазерного излучения. У способа одноимпульсного сверления есть свои недостатки: большая энергозатратность импульса; ограничение толщины заготовки, в которой делаются отверстия; коническая форма отверстий из-за постепенного ослабления тепловой энергии при передаче внутрь материала.

Отверстие сверлится за несколько импульсов лазерного излучения – лазер несколько раз бьет в одну и ту же точку на заготовке. При каждом импульсе материал испаряется и вытесняется из отверстия под действием испарившейся составляющей. В результате многоимпульсной обработки металла лазером получаются более глубокие (около 100 мм) отверстия, чем при одноимпульсном сверлении.

К преимуществам этого способа сверления можно отнести следующие возможности: сделать отверстия под углом к поверхности заготовки; просверлить отверстия в материалах повышенной твердости, получить качественный результат сверления. Недостатком является более длительный процесс выполнения технологической операции.

Отверстие любого диаметра сверлится лазерным лучом, который пульсирует и вращается. После высверливания в заготовке первого отверстия рядом с ним с некоторым перекрытием делается другое. Как показывает практика, наиболее соответствующим является перекрытие от 50 до 80 % площади отверстия.

      • Ударное сверление вращающимся лазерным лучом (лазерным «спиральным сверлом»).

Этот способ сверления по принципу выполнения очень похож на ударное лазерное сверление, разница лишь в том, что лазерный луч дополнительно вращается. Лазерное «спиральное сверло» снимает с заготовки материал в виде стружки-спирали. Метод ударного сверления вращающимся лучом позволяет добиться высокого качества обработки металла лазером.

5. Лазерная сварка металлов (LBW).

Лазерная сварка применяется для соединения нескольких металлических деталей. Лазерный луч является концентрированным источником тепловой энергии. Такая сварка отличается большой глубиной и высокой скоростью выполнения сварочной операции. В результате получается тонкий и качественный сварной шов. Технология лазерной сварки часто используется в машиностроении.

Для электронно-лучевой (EBW) и лазерной сварки характерна высокая плотность энерговыделения (в среднем 1 МВт/см2). Тепловая мощность луча обеспечивает большую скорость нагрева и быстрое охлаждение рабочей зоны. Термическое влияние лазера распространяется на небольшие области заготовки.

Для сварки используются только лучи небольшого диаметра, размер лазерного пятна варьируется от 0,2 мм до 13 мм. Энергетические затраты зависят от глубины проникновения луча и положения фокальной точки. Чем больше глубина проникновения, тем выше энергозатратность. При расположении фокальной точки ниже поверхности заготовки расходуется максимальное количество энергии.

Выбор непрерывного или пульсирующего лазерного луча зависит от свойств свариваемых заготовок. Для соединения тонких материалов (например, лезвия бритвы) выбирают импульсы длительностью порядка миллисекунд, а для выполнения глубокой сварки необходим непрерывный лазерный луч.

Лазерную сварку называют универсальной технологией, так как с ее помощью можно выполнить соединение деталей из различных металлов и сплавов: алюминия, титана, сталей (нержавеющих, углеродистых, высокопрочных низколегированных).

Лазерная сварка, как и электронно-лучевая, отличается высоким качеством. Но высокая скорость охлаждения при сваривании высокоуглеродистых сталей может привести к растрескиванию шва. Скорость сварки зависит от количества затраченной энергии, типа заготовок и толщины металла. Газовые лазеры обладают высокой мощностью и преимущественно используются для крупносерийного производства в автомобилестроении.

Какое оборудование используется для обработки металла лазером

Оборудование для лазерной металлообработки различается по источникам излучения и выходной мощности, которая определяет металлический материал. Твердотельные (на гранате с неодимом Nd:YAG) квазинепрерывные и импульсно-периодические лазерные источники с выходной мощностью от 100 до 300 Вт предназначены для обработки черных металлов и нержавеющей стали. Газовые непрерывные СО2 лазерные источники с выходной мощностью до 2500 Вт используются для обработки черных металлов легированных сталей и некоторых других видов сплавов.

В комплект оборудования для обработки металла лазером входит:

      • лазер, оснащенный системой охлаждения и системой питания;
      • координатный стол для крепления заготовки;
      • компьютерная система управления координатным столом;
      • устройство подачи технологического газа;
      • вентиляционная система.

Для обработки металла используется лазер с очень большой мощностью излучения. Чтобы предупредить его перегрев, лазерная установка оснащена двухконтурной водяной системой охлаждения или холодильным компрессором на фреоне. Выбор источников питания лазера зависит от практикоориентированных технологических задач. Трансформаторные схемы питания способны выдерживать большие нагрузки, обеспечивают непрерывную работу и считаются более надежными. При минимальных мощностях используются импульсные блоки питания.

Координатный стол – это высокоточное автоматизированное оборудование, оснащенное портальной схемой. Заготовка, неподвижно закрепленная на координатном столе, режется лазерным лучом, который перемещается по координате. Но могут быть и другие схемы. Например, при резке Nd:YAG лазерный луч перемещается по одной координате, а стол с закрепленной заготовкой двигается по другой координате.

Промышленная компьютерная система для управления координатным столом оснащена различными аппаратными устройствами: приводом, датчиками и т. д. Все поставленные задачи выполняются с помощью программного обеспечения, в состав которого входят:

      • Программа ввода исходных данных (электронных чертежей) в графических редакторах AutoCad, CorellDraw, Adobe Illustrator и др. Используются следующие форматы данных: *.plt, *.ai, *.dxf, *.cf2.
      • Программа управления поворотом, масштабированием, размножением исходного файла (электронного чертежа) по рабочему полю стола.
      • Программа настройки параметров лазерной обработки и режима врезки, автоматического учета ширины реза, определения внутренних и внешних контуров, корректировки режима резки непосредственно в технологическом процессе.
      • Программа настройки параметров координатного привода и рабочей среды оператора, генерации (рисования) простейших геометрических форм.
      • Программа подключения внешних устройств, управления лазерным излучателем, обеспечения связи с внешней локальной сетью.

При выполнении лазерной резки используется различный технологический газ – кислород для щадящей резки черных металлов, инертный газ азот для нержавеющей стали. При прожигании материала лазерным лучом образуются газообразные и аэрозольные продукты распада. Их удаление осуществляется с помощью специальной вентиляции, которая является обязательным элементом любой промышленной установки для обработки металла лазером.

Для того чтобы лазерный луч попадал точно в цель, оборудование оснащено системой зеркал «летающая оптика». Альтернативой является комплекс деформируемых зеркал, в котором сочетаются стационарные и «портальные» схемы. Луч, прежде чем попасть в сфокусированную точку, отражается в зеркалах и дважды меняет траекторию движения. И хотя в такой системе отсутствует сложная механика, к ее главным недостаткам можно отнести трудности в управлении зеркальными поверхностями.

Современная лазерная установка – это сложный механизм, отличающийся простотой управления. Лазерное оборудование обеспечивает высокую скорость и точность металлообработки.

Компьютерное оснащение позволяет полностью исключить фактор человеческой ошибки, способствует экономичному расходу материалов, гарантирует высокое качество каждого готового изделия.

Полная автоматизация всех операций обеспечивает постоянство сфокусированных лучей. Вся энергия с помощью линз совмещается в один мощный лазерный луч, который при соприкосновении с материалом нагревает поверхность в зоне линии разреза. В то же время остальная область заготовки остается холодной. В результате обработки детали не деформируются, на их поверхности отсутствуют какие-либо дефекты.

Особенности обработки различных видов металла лазером

1. Лазерная обработка алюминия.

Алюминиевые заготовки обрабатываются по заданному автоматизированному шаблону. На начальном этапе в программу загружаются исходные данные – электронные чертежи будущей детали. К выполнению этого процесса не привлекаются узкие специалисты. С помощью компьютера рассчитывается наиболее рациональное расположение формы детали на металлическом листе. Процент излишков сведен к минимуму.

Резка стали и деревообработка являются наиболее востребованными технологиями в промышленном производстве.

В сфокусированную на заготовке точку вместе с лазерным лучом подается поток воздуха, который увеличивает энергию излучения, удаляет продукты плавления и шлаки.

Алюминий – мягкий материал, обладающий высокой теплопроводностью. Он быстро поглощает тепловую энергию лазера. Для многих небольших производственных цехов это свойство металла является проблемой, так как для работы с ним необходим мощный лазер.

Особенности обработки алюминия лазером:

      • невысокая производственная скорость, так как высокоскоростные установки не обеспечивают необходимый контроль деформации заготовки;
      • отсутствует прямой контакт с материалом в процессе всей операции, лазерный луч прожигает поверхность алюминиевого листа;
      • продувная зона обеспечивает полную очистку контура;
      • при правильно загруженном чертеже автоматизированная установка позволяет изготовить детали самой сложной формы;
      • при работе с алюминием ошибки исключены, система ЧПУ полностью контролирует весь технологический процесс.

При обработке мягкого металла лазером к крепежным элементам предъявляются особые требования, это особенно актуально для устаревших лазерных установок. Для лазерной резки не требуется закрепление заготовок – деталь кладется на координатный стол, а лазерная установка автоматически выполняет все операции в соответствии с введенными данными, загруженными электронным чертежом.

2. Обработка нержавеющей стали.

Нержавеющая сталь обладает высокой сопротивляемостью к любому виду физического и энергетического воздействия. Поэтому обработка этого сплава является непростым энергозатратным процессом.

Особенности обработки нержавеющей стали лазером:

      • Раскрой материала осуществляется бесконтактным способом, в результате этого полностью исключается даже самая незначительная деформация деталей.
      • Даже при высокой сопротивляемости материала отсутствует фактор погрешности.
      • При лазерной резке листовой стали не образуются дефекты, такие как: заусеницы, отслоение краев, заусениц, деформация кромки края.
      • Сокращение временных затрат, следовательно, и снижение стоимости выполнения работ.
      • Показатель мощности лазерного оборудования не должен иметь каких-либо ограничений по толщине материала или заготовок. Раскрой любого стального листа осуществляется равномерно, в соответствии с электронным чертежом.

Основным преимуществом обработки нержавеющей стали лазером является высокое качество деталей и длительный период их эксплуатации.

Нержавеющая сталь устойчива к коррозии и процессам окисления. Лазер нисколько не снижает физические характеристики нержавеющих сплавов.

3. Обработка лазером меди и латуни.

Чтобы обеспечить правильный раскрой листов меди, необходимо выставить правильные параметры установки ЧПУ, именно от этого будет зависеть качество изготовленных деталей. Резка выполняется на низких скоростях и при максимальной мощности лазера. Несоблюдение технологических правил отразится на конечном результате – нарушится структурная целостность заготовки, произойдет деформация кромок.

Для лазерной резки латуни нет необходимости в особой настройке программы, достаточно выставить стандартные параметры ЧПУ. Лазерная технология гарантирует изготовление деталей высокого качества. В процессе обработки металла лазером не нарушаются физические свойства материала, исключается деформация изделий и образование дефектов. Подобную резку можно по праву назвать современной технологией ювелирной металлообработки.

Почему следует обращаться к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

ТОП лучших брокеров для торговли бинарными опционами:
  • Бинариум
    Бинариум

    1 место! Лидер! Лучший брокер бинарных опционов за этот год!
    Идеальный вариант для начинающих — дают бесплатное обучение и демо-счет!
    Заберите свой бонус за регистрацию:

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Лучшие площадки для торговли бинарными опционами за 2020 год:
  • Бинариум
    Бинариум

    1 место! Лидер! Лучший брокер бинарных опционов за этот год!
    Идеальный вариант для начинающих — дают бесплатное обучение и демо-счет!
    Заберите свой бонус за регистрацию:

Добавить комментарий